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Abstract— In this paper, we present a distributed computing
framework designed to support higher quality of service and
fault tolerance for processing deadline-driven tasks in a P2P
environment. Our proposed strategy strives to build an open
infrastructure that is accessible by ordinary users for both cycle
donation and consumption. For jobs that fail to be locally ac-
commodated, the proposed scheduler MET (Maximum Efficiency
Tree) builds a dynamic multi-level resource tree with minimal yet
sufficient power to process the job prior to its deadline. The peer
selection policy is based on a joint evaluation of the computational
power and communication bandwidth at the nodes. Further, with
an optimal load sharing scheme, the resulting resource tree is
guaranteed to be power efficient.

The proposed computing protocol offers an approach for
utilizing idle computing cycles of peer computers on the Internet
in a P2P manner. The protocol exhibits three attractive features
- decentralized operation, optimized load balancing and guaran-
teed resource utilization. Extensive simulation experiments are
conducted to study the effectiveness of the proposed framework
under various network conditions. We compare our strategy with
two other tree construction algorithms, namely MST (Minimum
Spanning Tree) and MCT (Maximum Computation Tree). It is
demonstrated that MET outperforms both MST and MCT consis-
tently. Further, sensitivity results with random node failure/join
are also furnished.

I. INTRODUCTION

With the advancement in computer technology, the compu-
tational power, storage space and communication bandwidth
available on desktop machines have been growing dramati-
cally. Millions of such resource-rich machines remain idle
without being fully utilized locally. Peer-to-Peer (P2P) net-
works [1], [2], [3], among many other distributed computing
models, exhibit good scalability and flexibility. They have been
proven to be an efficient and successful way for file sharing
over the Internet.

P2P computing [13], [16], [15] offers the opportunity to
aggregate the unused computer cycles that are scattered on the
network to support distributed computing. P2P characteristics
like decentralized control, self-autonomy and load balancing
make it very attractive for large-scale distributed applications.
Hence, P2P computing offers an exciting new challenge for
P2P networks beyond traditional information sharing and
content distribution applications. As such, various applications
such as portfolio pricing, market and credit evaluation, media
transcoding [13], [12], [20] and many other computation
intensive grid applications are being deployed over the In-
ternet. Peer to Peer networks and grids are both distributed
computing models that enable pooling and coordinated usage
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of large sets of distributed resources. In contrast to Grid
computing [9], P2P computing offers better scalability and
flexibility while compromising in reliability and quality of
service, due to the autonomy and dynamics of its participants.
A number of Internet based distributed computing projects,
such as SETI@Home [1], Avaki [4] and Condor [5], have
demonstrated the feasibility of this approach.

Most of the research work in the area of P2P have focussed
on developing communication protocols and platforms [2],
[3], [6] to accomplish data sharing and exchange among
peers. There are few mechanisms for explicitly gathering and
allocating remote cycles for computing purposes. Most of the
cycle sharing systems demand a centralized web site and are
limited to members of participating institutions [1], [5]. Their
scheduling schemes are adhoc without a clear analysis of
the requirements and prediction of the total execution time.
They also lack a systematic procedure for recruiting resources
from the large pool of Internet nodes. Therefore, decentralized
job submission models and job scheduling strategies have
become very attractive research topics [7], [15] to allow CPU
cycle sharing among multiple jobs originating from ordinary
users. Moreover, these applications often require predictable
performance because tasks in these applications have deadlines
to be met [12]. These real-time issues have not been addressed
earlier. Hence, supporting them in a P2P environment with un-
predictable latencies and varying resource availability presents
a number of challenges in managing the networking resources
and scheduling the task executions across the network. To
effectively utilize the idle resources, efficient job partitioning,
resource identification and load balancing algorithms have to
be developed while considering the communication overhead
to establish such a P2P distributed computing system.

Tremendous amount of job scheduling work has been done
in the field of parallel processing. Given a generic multi-
processor topology and configuration, their goal is to come up
with the optimal scheduling that minimizes the total processing
time. On the other hand, researchers in the area of grid and
P2P computing have focussed on identifying good peers [14],
[11] based on the capability and reliability of their neighbors
for possible resource sharing. As a result, the design of load
sharing algorithms for large scale distributed systems is often
isolated from the resource location process. Due to the absence
of a centralized scheduler in such networks, it is also hard
to develop load sharing algorithms that can optimize the
performance as the nodes are usually connected in an arbitrary
fashion. We are thus motivated to design an effective load
sharing mechanism for P2P networks that identifies the most



efficient resource pool with an optimized load scheduling.
Effectively, as the selection of peers is targeted for an efficient
load sharing purpose, we focus to explore the maximum
network utilization by building a resource tree with maximum
efficiency. Starting from where the jobs originate, we attempt
to build a dynamic multi-level resource tree on which the jobs
can be properly shared. There are two specific questions that
need to be answered while building this tree, namely,

• How to build the tree of peers taking into account
their computational availability and communication band-
width.

• When do we stop recruiting peers in the resource tree
based on the real time requirement of the job.

In this paper, selection of peers is based on a combined
evaluation of the available computational power and communi-
cation bandwidth. We show that our tree structure yields much
better performance than a minimum spanning tree (MST) or
a maximum computation tree (MCT). We apply the Divisible
Load Theory (DLT) to recruit nodes into the resource tree until
real-time constraints of the jobs are met. DLT [19], [8] is a well
established theory in parallel computing that attain optimal
scheduling given that load is perfectly divisible. Since the
load information on the nodes changes dynamically without
updating other nodes, a resultant communication overhead is
incurred in collecting information for efficient load sharing.
Moreover, as a node can be potentially requested by multiple
peers, protocols are developed for the actual resource commit-
ment at a node. Considering the inherent unpredictability and
ad hoc nature of P2P networks, random job arrival and node
failure/join are also addressed in our scheme.

The organization of this paper is as follows. In Section
II, we formulate the problem and describe the proposed P2P
computing protocol. In Section III, we present the detailed
approach of our strategy for building and load sharing on a
multi-level resource tree of maximum efficiency. Simulation
specification and results are presented in Section IV and the
paper is concluded in Section V with future extensions.

II. PROPOSED FRAMEWORK FOR P2P COMPUTING

In a real-time P2P system, it is assumed that each node,
besides processing its local workload, has spare computational
power to share with other peers. Application tasks that demand
external computational power, can originate from any node
at any time with varying resource requirements and timing
constraints. More specifically, the surplus power available on
each peer varies and its availability time differs. Peers can join
and leave arbitrarily without notice. To adapt to such varying
circumstances, a decentralized online resource management
mechanism and task scheduling strategy that requires only
local information is an apt choice. In this paper, we assume
that all nodes in the network can individually compute and
communicate with other nodes concurrently. However, each
node can only communicate with one neighbor at a time.
This means, a node has to send the communication messages
sequentially, which adds up the total communication cost as
it tries to recruit more peers. Similarly, jobs are sequentially

dispatched to peers from the same parent and it takes different
times depending on the amount of transfer and the communi-
cation bandwidth between the nodes.

In order to build a scalable and reliable load sharing
mechanism, we adopt a decentralized resource location and
job allocation scheme whereby each node only interacts with
its direct neighbors. When a node Px is overloaded, it sends
a request to all its directly connected peers for their idle
resources. The neighbors respond to Px with their availability
and reliability levels (credit). Upon receiving the feedback
information, the local scheduler on Px chooses the one that
benefits the total computation capacity the most. If additional
computing power is needed, a new node will be chosen starting
from the nodes that have already been recruited, following
the same criteria. This procedure will be repeated until the
computational requirements are met and thereby gives rise to
a multi-level resource tree rooted at Px. Also, note that several
nodes may be simultaneously trying to share their workload,
which may give rise to multiple resource trees with different
roots existing in the network. Hence, it is also possible that a
particular node can be included in multiple resource trees at
the same time.

Choice of peers at each step not only depends on the abso-
lute computational power that is available on a node but also
on the communication cost incurred to transfer the workload.
Eventually it is the combination of the computational power
and communication bandwidth together that determines the
overall performance. When a powerful node is connected via
an extremely slow link or when a fast link connects to a node
that is barely available, it is desired not to include them in P2P
computing. As a result, blindly including nodes that has either
maximum computational power or minimum communication
cost may not maximize the overall benefits. Further, even
if a homogeneous network is considered, resource trees of
different structures can also vary greatly in terms of their
performance. Due to the sequential communication pattern,
resource trees that are either too deep or too wide are obviously
not preferred. Thus, identifying the most effective nodes with
a balanced underlying tree structure from among the vast
number of peers on the network to achieve maximum benefit
is the essence of our approach. In the following sections, we
describe in detail our proposed P2P computing model and the
supporting communication protocol. The exact procedures for
building and scheduling such a multi-level resource tree are
given in Section III.

A. Peer Attribute

A node, Pi, is identified with the following attributes:
• Available computational power wi (byte/sec).
• Credit ci: this parameter reflects the reliability of a peer.

When a new peer joins, it is included with an initial credit
ci = c0. Whenever Pi consumes surplus power from
other peers, ci is deducted in proportion to the power
wb and time duration Tb that is “borrowed”. On the other
hand, bonus points are credited to ci proportionately to
the power that ci “lends” to its peers, under the condition



that the committed power is not withdrawn during pro-
cessing. Otherwise, Pi will be penalized with its credit
for abruptly breaking the initial power commitment.

• Credit minimum requirement γ: this is the minimum
credit requirement for a peer to be allowed to use the
P2P system. Peers with credit less than this threshold γ
will be barred from using the idle computational power
in the system. γ is defined as a system wide parameter
to bar peers that always “borrows” but never “lends”.

B. Job Attribute

A job, Jk, is characterized by the following attributes:
• Job size: Sk
• Execution deadline: Dk

• Reliability tolerance τk: this is a user specified reliability
threshold for choosing the peers for a particular job. Peers
with credit ci under the threshold τk are considered un-
trustworthy and hence may not be considered to process
job Jk for local reliability/QoS concerns.

C. Peer Behavior

Each node, Pi, has two possible modes:
• Active mode: Peers are in this mode so long as their credit

is above the threshold γ. Peers in this mode are not only
allowed to donate its surplus power with its neighboring
peers but also to “borrow” idle power from other nodes.
However, in order to stay in this mode, peers are forced to
maintain a balanced behavior on its power consumption
(decrease of ci) and contribution (increase of ci). Since
extra penalty is inflicted for any “faithless” behavior,
peers in this mode are generally considered reliable.

• Passive mode: Otherwise, as a penalty, peers will be
downgraded to the passive mode when its credit falls be-
low the threshold γ. Two types of inferior behaviors can
actually cause a peer to fall into this mode. When a node
consistently consumes more power than its contribution,
its credit will eventually drop below the threshold which
in turn will prevent it from further using the system.
Such nodes are considered “selfish” and are mandatorily
required to contribute enough before they are allowed to
use the system again. On the other hand, even if a node
does not demonstrate a consumption dominant behavior,
its credit can still drop below the threshold when the node
frequently cutoff its committed power supply to other
peers. However, this penalty can be easily repaired by the
node if it contributes its power constantly for some time
without intermittent cutoff. This mechanism, essentially
gives the node an opportunity to rebuild its reputation
and the level of reliability. As a result, its credit level
can be gradually recovered and eventually the node will
be brought back to the active mode.

D. The Protocol to Select Peers

• A node, Px, that demands extra computational power
sends a request message to all of its immediate neighbors
for their current status.

• A node, Pi, upon receiving a request message, checks its
availability, and replies via a status message that contains
its available surplus power wi and credit ci.

• Among all the neighbors that responded, Px selects the
one that maximize the total power enhancement based on
a combined evaluation of the communication bandwidth
and computational power. Consequently, a select message
will be sent to the selected node, say Pj , to obtain its
further commitment. The detailed peer selection policy
will be given in Section III.

• Once the selected node Pj receives the select message,
Pj , if not previously committed to other nodes, commits
its availability to Px via a commit message. Otherwise,
a busy message will be sent to Px if it happens that Pj
has already committed to another node. In our protocol,
peers commit their power based on a First Come First
Serve policy.

• If a commit message is received from Pj , Pj will be
attached onto the tree. Otherwise, if a busy message is
received, another node Pk will be selected from among
the remaining neighbors following the same criteria. As
an alternative, Pk will be included in the tree if available.

• Once a new node is identified and included in the tree,
Px checks if the total power of the tree is sufficient.
If the surplus power gathered is insufficient, a second
round recruitment procedure will be initiated to seek
for additional power. In order to find the next optimal
node to be included, each node on the current tree will
identify a local optimal candidate following a similar
procedure as described above without carrying out the
final commitment step. Further, among all these candidate
nodes, the one that brings in maximum power benefit will
be chosen. The concept of finding the equivalent power
of a subtree, as will be elaborated in Section III, is used
to facilitate such a peer selection procedure.

• The above procedure will be repeated till sufficient com-
putational power has been gathered. Starting from the
root, jobs will be dispatched down the tree, level by level
according to the optimal load distribution as suggested
by the scheduler.

• In the case of a node failure, the parent node will
be notified with a failure message. Extra power will
appropriately be located to make up the loss.

E. Divisible Load Theory

The load sharing protocol, described above, is highly de-
pendent on the efficiency of the local scheduler to determine
the load distribution among the peer nodes. It is well known
that the total execution time of a job is minimal when all
the processors executing different portions of the job finish
execution at the same time. The Divisible Load Theory (DLT)
[8], [19] develops scheduling assuming that the workload is
perfectly divisible for such distribution among the processors,
so that all processors finish at the same time. It considers
heterogeneous processors and different communication times
to send data to those processors. DLT is particularly suitable



for data parallel operations, where the volume of data can be
perfectly distributed without causing any error. DLT is highly
applicable in parallel processing of many applications [19].
We have also demonstrated that DLT can be applied to packet
processing in a network with good accuracy even though a
packet is not divisible [10]. However, its possible use in P2P
computing has not been explored earlier.

In this paper, we develop a scheduling theory at the root
node based on DLT. However, instead of simply scheduling
among the available directly connected peer nodes, we recruit
more nodes in the form of a multiple level tree until the
real-time requirements of the jobs at the root are satisfied.
We consider the protocol overhead to establish the tree, as
well as the communication time to dispatch the jobs. We also
obtain many interesting sensitivity results indicating various
computation-communication tradeoffs in Internet computing.

III. DESIGN STRATEGY

In this section we describe the procedure of acquiring
resources from a large network of peers, once the job re-
quirement exceeds the capability of the local computer. The
scheduler running at each individual node is only aware of its
immediate peers, enquires them for their surplus power, and
correspondingly schedules the workload upon job arrival.

A. Resource Analysis

A real-time job Ji is characterized by its arrival time (Ai),
execution deadline (Di), and size (Si). A job is considered suc-
cessful if it can be executed before its deadline. Assuming that
the scheduler is invoked immediately at the time Ji arrives,
the minimum computational power wmini needed to meet its
deadline is wmini = Si

Di−Ai

neglecting the overhead incurred
by the scheduler. Thus, a resource tree that offers no less than
wmini computational capacity is needed to accommodate Ji
successfully. On the other hand, once Pj commits its surplus
power to a node Pk, its surplus power wj will be made un-
available to the rest of the network until Pk releases its control
of wj . However, even if a peer is not capable of donating
any computing cycles actively, it can still be involved in the
resource discovery process and help transferring the workload
to other neighboring nodes in a passive mode. Therefore, nodes
recruited may consist of peers with heterogeneous power and
communication bandwidth, and may be available at different
times. A proper resource management and load scheduling
algorithm is needed to guarantee both good load balancing
and resource utilization.

B. Optimal Load Sharing

Given a pool of peer nodes, the total computation capacity
weq that is available relies on the underlying topology of
how peers are connected and scheduled. An optimal load
sharing mechanism will help maximize the network resource
utilization and in turn minimize the absolute resource demand.
Thus, we need to follow an optimal scheduling pattern for
resource evaluation thus ensuring only necessary number of
peer nodes to be involved for a minimized time interval.

In this section, we shall demonstrate how to achieve such
an optimal scheduling pattern that explores the maximum
equivalent computation capacity weq of a given resource tree.

1) Load Sharing on a Single-level Tree: For a particular job
Ji, in order to build a resource tree of the right size, we need
to determine whether the total power offered by a resource tree
is sufficient to meet its requirement wmini . This estimation will
be inaccurate if arrived just by adding up their computational
power, because their communication times are different on
the tree. Therefore, estimation with proper partitioning and
scheduling is needed in order to determine the execution time
of the job. We shall follow two optimality criteria to guarantee
minimum execution time. First, as suggested by the Optimal
Sequencing Theorem [8], the sequence of load distribution
by the root node should follow a decreasing order of the
communication speeds. Second, we partition and distribute
the workload in such a way that all the participating peers
stop computing at the same time. Consider a single-level
heterogeneous resource tree rooting at Px shown as the first
level of the tree in Fig. 1(a), its optimal load distribution
pattern is illustrated in Fig. 1(b). Px divides the total workload
into (m + 1) parts, keeps its own share αx, and distributes
the other fractions to the corresponding child node one after
another in the decreasing order of their bandwidth. Each child
node Pj starts processing immediately upon receiving its load
fraction αj and continues to do so until this fraction is finished.

Such a pattern, takes into consideration both, the communi-
cation and computation costs for sharing the workload. The
following recursive equations are obvious from the timing
diagram shown in Fig. 1(b). Note that wj is the available com-
putational power of Pj and zx,j represents the communication
bandwidth between Px and Pj .

αx

wx

=
α1

zx,1

+
α1

w1

, (1)

αj

wj

=
αj+1

zx,j+1

+
αj+1

wj+1

, j = 1, ...,m− 1 (2)

Using the normalizing equation αx +
∑m

j=1
αj = 1, we can

solve these equations by expressing αx and αj in terms of αm:

αx = wx(
1

zx,1

+
1

w1

) ·

m−1∏

k=1

wk(
1

zx,k+1

+
1

wk+1

) · αm (3)

αj =

m−1∏

k=j

wk(
1

zx,k+1

+
1

wk+1

) · αm, j = 1, ...,m− 1 (4)

where,
αm =

1

1 + wx(
1

zx,1

+
1

w1

)

m−1∏

k=1

fk +

m−1∑

j=1

m−1∏

k=j

fk

(5)

fk = wk(
1

zx,k+1

+
1

wk+1

) (6)

Thus, using the above closed-form solution, we can obtain
the optimal load fractions α for scheduling the workload on
a single-level resource tree network. The desired scheduling
pattern can be guaranteed so long as we follow the derived
load fractions αj on dispatching the load. Assuming the jobs



Px

Pm

Pj
P2

P1

Pj+1

(a)

. . .

CP     x

...
...

P j

P 1

P j+1

. . .. . .

CP     1

CP    2

CP    m

    j+1CP 

/=    jCP j a j w

CM     2

CM     1

= j a

P 2

P x

 mP

      

CM     2CM     1

Computation:Computation:

CM     m

CM     j+1

CM     j

CM     j CM     j+1 CM     m

  z/     jCM 

CP   j

x, jCommunication:Waiting:

(b)

Fig. 1. Optimal Load Sharing Pattern on a Resource Tree

are perfectly divisible, the workload to be dispatched to a peer
Pj for job Ji is Si · αj . As all the peers are guaranteed to
stop processing at the same time, the total processing time is
minimized and can be easily calculated by Tmin = S · αx

wx

.
2) Load Sharing on a Multi-level Tree: In the previous

section, we designed an optimal load distribution strategy for
a single-level resource tree. However, we may have to seek
more levels of nodes in order to obtain sufficient computational
power. Hence, it is crucial to extend the same optimal schedul-
ing on a multi-level resource tree shown in Fig. 1(a). We use
the concept of equivalent node to estimate the computational
power available on a tree, which exhibits the same execution
time as the original tree for a given workload. We determine
the equivalent processing power weq of a single-level subtree
as follows.

Tmin =
S · αx

wx

=
S · 1

weq

(7)

weq =
wx

αx

(8)

Thus, for any given single-level tree, we can replace it with
such an equivalent node with equal computational power. By
traversing from the bottom level to the root of the tree, we
can simply replace each single-level subtree with its equivalent
node till the root is reached. In this way, the entire tree can be
reduced to a single equivalent node Peq with weq equivalent
power. During this procedure, for every single-level subtree
that come across, we obtain the local optimal load fractions αi
as suggested by (3) to (6) and use (8) to calculate its equivalent
power. By following these load fractions hierarchically on
each single-level subtree as and when we actually dispatch
the workload on the resource tree, the optimal load distribution
pattern as shown in Fig. 1(b) will be automatically guaranteed
across the entire tree, both locally and globally.

C. Building the Resource Tree of Maximum Efficiency
In this section, we describe how a multi-level resource tree

is constructed to fulfill the local job requirement. Consider a
node Px, which is unable to accommodate its own job Ji and is
seeking extra computational power from the network. In order
to accommodate Ji successfully, it is necessary to construct a
resource tree Σ such that its equivalent computational power
weq is a minimum of wmini .

Taking into consideration both the communication and
computation costs, we use the concept of equivalent power weq
as the node selection criteria. In this way, the tree is inherently
constructed to maximize the overall performance based on
the optimal load scheduling derived. Such a tree is termed
a maximum efficiency tree (MET) as it represents the most
effective set of peers for load sharing at the root. For any job
failed to be accommodated locally, the local scheduler at that
node will try to build a resource tree to execute the job. In this
case any peer can be considered as the root node. Therefore,
it is possible that one node may host multiple resource trees
for separate jobs and further, multiple trees rooted at different
nodes can exist on the network simultaneously. We thereby
allow for a particular node to be conditionally shared by
multiple trees ensuring no resource conflicts.

Thus, starting from the root, we shall include new nodes to
the tree one at a time until the required computational power
is gathered. From among all the reachable candidate peers
of the current tree, the node that maximizes an increase in
the total equivalent power of the tree (∆weq) will be chosen.
Each time a new peer is attached to the tree, we calculate the
updated equivalent power of the entire resource tree to see if it
meets the requirement. Else, another round of node selection
will be initiated starting from the new tree. As always, such
a procedure can be carried out hierarchically on the tree
and repeated till the capacity of the tree reaches the desired
amount. As the nodes are selected following the optimal load
sharing mechanism which considers both peer computation
and communication capacities, the resulting resource tree is
guaranteed to be balanced in shape, small in size and efficient
in power. Fig. 2 presents the detailed procedure that should be
followed to build such a tree.

D. Fault Tolerance Mechanism
In P2P networks, individual nodes may fail or malfunction

at random, thereby are unable to provide the desired service.
Jobs may subsequently fail due to unexpected node failures on
the resource tree. To prevent such job failures, we can either
find additional power backup before the actual node failures
or alternatively devise after-failure resource make-up plans.
In our scheme, the parent of the failed node is responsible
for locating extra power to compensate for any power loss



Procedure: MET(...)
Job analysis: wmin

i = Si

Di−Ai

, ∀Ji

Initial state: Σ = {Px}, weq = wx

if (weq ≥ wmin
i ), exit;

Do { ∀Pk ∈ Σ {
P k

candidate = Find Candidate(Pk);
wk

candidate = Find weq(Σ ∪ Pcandidate);
}
wc

candidate = max{w
k
candidate};

pnext = P c
candidate;

wnext = wc
candidate;

Σ = Σ ∪ Pnext;
weq = wnext;

} while (weq < wmin
i )

Fig. 2. Building Maximum Efficiency Trees

caused by its child nodes. We assume that nodes must notify
its parent before leaving. Upon being notified with such a node
failure, the parent node will follow the same tree construction
procedure as described in Fig. 2 to build a supplemental
subtree that is equivalent to the failed node in terms of its
computation capacity. If enough power can not be gathered
at this level, the node at the next upper level in the resource
tree will be informed to further seek additional power. Such
a procedure will be repeated till sufficient power is located or
the root node is reached.

IV. PERFORMANCE EVALUATION

In this section, we present a detailed simulation based
evaluation and discussion on the proposed load sharing frame-
work. The simulator works in a decentralized fashion and
the schedulers residing on individual nodes are triggered
by the corresponding control messages as specified in the
proposed protocol in Section II-D. GT-ITM Transit-Stub (TS
model) [22] is used to generate the network topologies for
our simulation. TS models the networks using a two-level
hierarchy of routing domains, with transit domains inter-
connecting the lower level stub domains. By default, the
latency of intra-transit domain links, stub-transit links and
intra-stub domain links are set to 20ms, 5ms and 2ms
respectively [18]. Assuming a standard Ethernet packet of
1.5KB, the corresponding latency generated above suggests a
communication bandwidth of 0.6Mbps, 2.4Mbps and 6Mbps
respectively. In all the experiments, if unspecified, the default
number of nodes in the simulated network is 5000 [18] and
the average degree of the graph is 17.5, as given in the TS
model. The simulator is designed to accommodate jobs with
varying lengths and time constraints. Jobs arrive as a Poisson
distribution with arrival rate λ = 1/sec and the size of the
job is determined by an exponential distribution β = 50MB.
We generate the job deadlines arbitrarily with a uniform
distribution (100sec, 500sec). The average time to process a
50KB job on a peer at its full potential is configured as 60ms.
The above parameters are taken from our measurements while
executing multimedia tasks in a Pentium-based cluster [21].

Control overhead of the load sharing algorithm is also
simulated in our experiments. The total overhead is esti-
mated based on the number of control messages generated to

build the resource tree. According to our proposed protocol,
the size of a control message is no larger than 20 bytes.
Hence, for each control message, we consider a constant
software overhead of 40µs for UDP as reported in [23] and
a transmission overhead as determined by the corresponding
communication bandwidth. In the following sections, we study
the performance of our algorithm against various network
and workload configurations. Effects of varying the job size,
network bandwidth and node failure rate are observed. We
compare the performance of MET with two other classic tree
construction algorithms as follows.

• Minimum Spanning Tree (MST): On building the resource
tree, at each step, the node with minimum communication
cost is always chosen.

• Maximum Computation Tree (MCT): On building the
resource tree, at each step, the node with maximum
computational power is always chosen.

For a particular job, resource trees built using different
node selection policy are equivalent in terms of their total
computation capacity but can vary greatly in terms of their
efficiency. To highlight the effectiveness of our algorithm MET
over the MST/MCT algorithms, we identify the following
metrics and observe their variation. Essentially, a good load
sharing algorithm should demonstrate maximum success rate
and utilization using minimum resources. We expect a tree to
be more efficient than its equivalent if it requires fewer number
of nodes and less amount of total computational power

∑
w.

• Resource utilization: average fraction of time that all the
nodes in the resource tree are kept busy. It indicates the
effectiveness of our resource tree construction.

• Success rate: the percentage of jobs that are accom-
modated to meet their deadlines. Based on our theory,
a 100% success rate can be guaranteed so long as
resource trees can be constructed to supply the desired
computational power. However, under certain workload
intensity and network conditions situations arise when
sufficient computational power fail to be located.

• Average tree size: average number of nodes recruited on
the tree.

•

∑
w: the total amount of power recruited per job.

A. Effect of Varying Job Size

In this section, we examine the impact of job size on the
performance of our algorithm. Network topology is devised
assuming an average of 5Mbps communication bandwidth.
By increasing the job size, we actually raise the resource
requirement to accommodate a job prior to its deadline and
thereby larger resource trees are needed. This is equivalent
to having a tighter deadline without changing the job size.
As shown in Fig. 3, more nodes are included in the resource
tree when the job size increases. As an immediate result, the
resource utilization drops down due to larger communication
cost incurred to dispatch the job. This effect can be observed
for all three algorithms. However, MET demonstrates higher
stability and consistently outperforms MST and MCT for both



success rate and resource utilization. Yet, as shown in Fig. 3(c)
and (d), MET always recruits the fewest number of nodes and
demands least power. Essentially, this is due to the optimal
load sharing mechanism adopted in MET that considers both
computation and communication costs for selecting the peers.
On the other hand, the peer selection policy of MST and
MCT only favors either node communication or computation
capability, thus demonstrating inferior performance due to
their biased decision on selecting the nodes. Correspondingly,
MST demands the most number of nodes due to its negligence
of peer computational capabilities when selecting the nodes.
Even though, except having a larger tree size, MST outper-
forms MCT in general as higher communication bandwidth
on its trees ensures better resource utilization. MCT, on the
other hand, ended up with recruiting much more power than
the other two algorithms as it blindly includes nodes with
maximum available power without proper utilization.

B. Effect of Varying Network Bandwidth

Due to the communication overhead incurred for building
the resource tree and dispatching the workload, network band-
width is an important parameter to evaluate the effectiveness
of different algorithms. As the dispatching of the workload
from a parent node to its child nodes is modeled sequentially,
the higher the bandwidth the better the resource utilization
and performance. As illustrated in Fig. 4, when the network
bandwidth drops below 3Mbps, the resource utilization for all
three algorithms is affected due to the limited communication
rate, thus resulting in less than 100% success rate. However,
MET still manages to maintain a high success rate and much
better resource utilization compared to MST and MCT. When
the network bandwidth is increased up to 4Mbps, a resource
tree satisfying our need can be easily formed and the resource
utilization of MET is guaranteed thereafter. Again, the average
tree size and power demand for MET is the minimal as
compared to MST and MCT, which indicates the efficiency
of MET for constructing the tree.

Interestingly, MCT needs to recruit more number of nodes
than MST when the bandwidth drops below 3Mbps as shown
in Fig. 4(c). This is due to the fact that communication
cost becomes the bottleneck while selecting the peers as the
bandwidth decreases. Gradually when bandwidth recovers,
MST recruits more nodes than MCT since computational
capability of the peers regains its importance.

C. Performance Under Node Join/Failure

In order to examine the impact of node failures on the per-
formance of our algorithm, nodes are failed at a constant rate
µ following an exponential distribution. Peers are randomly
selected to fail with probability correlated to their degree.
The number of nodes in the network is kept roughly constant
by matching the node arrival and failure rates. New nodes
are added to the existing network following the same criteria
as specified in GT-ITM. By varying the frequency of node
failures, we are able to demonstrate the robustness of our fault
tolerance mechanism. As shown in Fig. 5(a), MET is able to

maintain a satisfying success rate even when node failures
occur every second on average. Only when the failure rate
is set to be as high as 8/sec, the success rate starts to drop
moderately. However, as shown in Fig. 5(b), larger failure rate
incurs the average tree size to increase as more nodes are
needed to compensate for the power loss.

D. Overhead Analysis

In this section, we study the effect of algorithm overhead
by varying the job size and node failure rate. The overhead is
measured in terms of the number of control messages sent to
the network for building the resource tree. Different from the
communication overhead incurred from dispatching the jobs
(data messages), the delay incurred by control messages are
purely algorithm based. As can be seen in Fig. 3(c), when the
job size increases, more nodes are recruited in the resource
tree to satisfy a greater need of computational power. Thus,
when the size of the tree increases, more control messages
are generated for building the resource tree as shown in Fig.
5(c). Such an overhead increase, has a direct impact on the
efficiency of our load sharing algorithm. The longer it takes to
construct the resource tree, the longer the resources wait for
job execution, thereby resulting in a lower resource utilization
as illustrated in Fig. 3(b).

Similarly in Fig. 5(d), node failure rate is varied to observe
similar effects. As can be seen, the number of control messages
increases as the failure rate increases. Though the size of the
total workload remains the same in this experiment, greater
computational power is needed to compensate for the power
loss due to random node failures. As a result, when the failure
rate increases, the actual number of nodes on the tree increases
(as shown in Fig. 5(b)) and the overhead incurred to build the
tree also increases.

V. CONCLUSION

In this paper, we proposed an efficient open P2P cycle
sharing infrastructure Maximum Efficiency Tree (MET) that
seeks to harvest computer cycles from ordinary users in
an open access, non-institutional environment. The proposed
scheme is capable of sharing real-time jobs among a pool of
heterogeneous peer computers to ensure both load balancing
and high resource utilization. The design of MET was based on
Divisible Load Theory (DLT) applied to multi-level resource
trees constructed dynamically to meet the job deadlines. The
selection of peers is based on a joint evaluation of peer compu-
tational availability, reliability and communication bandwidth.
Extensive sensitivity results have shown that MET consistently
outperforms two other algorithms and satisfies both load
balancing and real time constraints for job executions. Future
works include implementing the protocol via PlanetLab [17]
with proper result validation mechanism in place. Also, it
would be interesting to extend the algorithms to handle the
case while the workload is nondivisible.
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